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Bound states and resonances produced by a sum of separable 
potentials 
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Received 26 July 1976 

Abstract. It is shown how an arbitrary number of bound states and resonances with 
prescribed energies and form factors may be derived from an equivalent separable 
potential. It is then possible to express the two-body T matrix exactly in terms of the bound 
state and resonance parameters without explicitly introducing the potential. 

1. Introduction 

The study of the three-body problem using Faddeev methods (Faddeev 1961a, b) has 
provided a stimulus for investigating the off -shell behaviour of two-body T-matrices 
(Lovelace 1964a, b, Kowalski 1965, Brayshaw 1968a, b, Mongan 1969). Realistic 
calculations of three-body systems require reliable two-body information and unfortu- 
nately this cannot always be constructed in a convenient form. 

It is well known that the physical or on-shell behaviour of the phase shift does not 
uniquely determine the off -shell behaviour. The usual procedure is to choose a 
physically reasonable class of potentials with parameters adjusted to give the appro- 
priate physics. Having done this the potential may be used to predict the off-shell 
behaviour although this is not often possible analytically. Lovelace (1964b) gave a 
number of ways of constructing the T matrix describing a system with a single bound 
state or resonance. One of these, based upon the use of a separable potential, results 
in a form particularly useful for three-body calculations and in this paper we develop a 
prescription which allows the inclusion of an arbitrary number of bound states and 
resonances with known wavefunctions. 

2. Separable potentials 

I n  a single partial wave the T matrix equation is (Lovelace 1964b) 

i;; = e, - R&i;; 
with 

s being the energy variable. 

349 



350 T W Preist 

For a simple separable potential 

(PI GIP’) = Algl(P)gl(P‘) 

and g&) is the real potential form factor. 
The corresponding T matrix is readily found to be (Yamaguchi 1954) 

Tlb, P r ,  s) = g l ( P ) d s ) g l ( P ’ )  

with 

This separable potential will produce a bound state at s = -E, if 

so that 

(3) 

Comparing this with the known bound-state contribution to the T matrix 

where G, @) is the wavefunction form factor, we see that G, (p) = gl (p)  if the potential 
form factor was originally chosen to satisfy the condition 

which, since the wavefunction t,b,(p) = -G,(p)/(p2+E,),  is equivalent to 

47rjom 1~,(4)12~2 dq = 1. 

Equation (4) may be rewritten in the form 

T(P, P ’ ,  s) = G,(P)y(s)G,(Pr) 

with 

This provides a convenient parametrization of a system involving one bound state in 
which the off-shell behaviour is expressed in terms of the binding energy and the 
bound-state wavefunction and the potential no long appears explicitly. 

The expression has obvious limitations in that the chosen form of the potential 
allows only one bound state in the particular partial wave considered. In molecular 
systems many bound states occur in each partial wave and it would be useful to extend 
this result to include an arbitrary number of bound states. 

The obvious procedure is to write (dropping the suffix l )  
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and one readily finds the solution (using an implied summation convention) 

T(P, P ’ ,  S)  =gt(P)7i,(s)gj(P’) (7) 

(Newton 1966), with 

This is a convenient mathematical result but it is not very useful from a physical point of 
view. 

Suppose we want to simulate a system with N non-degenerate bound states with 
form factors G,(p) and binding energies E,, p = 1,. . . , N :  the above expression 
involves the potential form factors gI(P) and the coupling constants Ai, i = 1, . . . , N 
whereas what is required is a transcription of equation (7) to a form analogous to 
equation ( 5 )  for the single separable potential. In addition the problem is not simply one 
of finding the N values A, that give the N bound states at s = -E, since for an arbitrary 
choice of potential form factors it is not clear that any choice of the Ai will give N bound 
states. This ‘input constraint’ on the potential form factors is a reflection of the fact that 
ultimately the wavefunctions h ( p )  are expressible in terms of the gl (p )  and the 
wavefunctions themselves must satisfy orthogonality conditions; these conditions must 
therefore be contained in some complicated way in the initial choice of the potential 
form factors g i b ) .  This point is illustrated by the numerical calculations of Beregi et a1 
(1970) who varied not only the coupling constants but also the functional form to obtain 
two bound states. 

Although we have focused attention on the bound states it is again convenient to 
solve the scattering problem obtaining the off-shell T matrix T(P, p ’ ,  s ) .  The bound 
states appear as poles of the T matrix at energies s = -E,, p = 1, . . . , N. 

3. The Tmatrix 

In this section we assume that a superposition of N separable potentials (equation 
(6)) produces N bound states and then transform the T matrix (equation (7)) into an 
alternative form in which the potential no longer explicitly occurs. The final result is 
then a generalization of equation (5 ) .  

We know from the general property of the T matrix that 

where G,(P) is the wavefunction form factor. As far as equation (7) is concerned this 
factorization is achieved by 

with G , ( p )  = Z  a r g j ( p ) .  We define an N x Nmatrix (Y by 
ff .=a? 

and its transpose 6 by 
Irl 1 

(6)jIr =a,”. 
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which is equivalent to 
m 

-4) I cl,(q)(tiP(4)42 d4 = 0. 
0 

This is guaranteed if the input wavefunctions are orthogonal. 
Eliminating p,, from (9) gives 

This may be put into a more symmetric form using (13) supplemented by the normaliza- 
tion condition 

477 lom 14,(4)12q2 d4 = 1 

to give 

Equation (14) inverted and substituted into (10) gives the generalization of equation ( 5 )  
for the single separable potential. 

4. Resonances 

In the previous section we have considered only poles of the T matrix (in the energy 
variable) on the negative real axis of the first or physical sheet (0 6 arg s < 277). One 
might therefore expect that equations (10) and (14) satisfactorily give the off -shell 
behaviour for s < 0. It is however well known that there may be additional singularities 
on the unphysical sheet ( -  77 S arg s < 0,277 d arg s < 377) with poles occurring on the 
negative real axis or as complex conjugate pairs. Real poles on the unphysical sheet 
correspond to virtual states and the complex conjugate poles in the lower half-plane 
produce resonances if they approach the line arg s = 0. 

We therefore require a method of incorporating these poles as well as the bound 
state poles and Lovelace (1964a) has shown how to do this by investigating complex 
potentials related to the actual potential by the introduction of a phase factor. 

Corresponding to the separable potential 

define a complex potential 

p(p, p ’ )  = e3i’ 1 Aigi(p ei’)gi(p’ ei’) = e3i* 1 Aigf(p)gf(p’). 

In addition introduce a complex free-particle Hamiltonian 
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The spectrum of the free-particle Green function will now be on the line arg s = 24 
rather than arg s = 0 and the Green function will be analytic except for the cut along 
arg s = 24. 

The T matrix is 
3iQ Q pb, P ‘ ,  = e gi (P)T$(s)gf(P’> 

with 

17) 

where the integral now runs along the line arg z = 4; hence #(s) is an ana-]tic 
continuation of ~ ( s )  into the region arg s < O  for 4 < O  and arg s > 2 ~  for I$ >O. 
Lovelace has shown that the continuation holds for 141 < ~ / 2 .  Thus if 24 < min(arg sR) 
where sR is the position of a pole in the region - T < arg s < 0 the eigenstates of the 
complex Hamiltonian will correspond to the poles on arg s = T and those in the lower 
half of the unphysical sheet. 

Labelling this set of singularities by their positions s, we see, following the 
arguments of the previous section, that 

a ?(4)ai”(4) 
T$ + 

S’S* s-s, 

and 

The eigenvalues s, correspond to (complex) energy values for which 

(TQ(s,)-1)ijajy4) = 0 

has a non-trivial solution. For a givens, in the lower half-plane this will only be possible 
if 24 < 24, = arg s,. However, for all 4 such that - 7r/2 < 4 < 4, the form of T’(s)-’ 
in equation (17) implies that 

4Y4) =f,(4>ai” (19) 

withf,(4) having modulus unity. This result follows by noting that gi(z) is a function of 
z 2  so that the integral in (17) can be converted into one running along the contour C1 in 
figure 1. The singularities of the integrand are the poles at z = f(s and the cuts 
and poles of gi(z) which lie on the imaginary axis. Contour integration (possible 
because the gib)  must produce normalizable wavefunctions) shows that T ’ ( S ) - ~  is 
independent of 4 for - ~ / 2  < 4 4,. Consequently the only dependence of ay(,$) 
upon 4 is an overall phase factor and so (19) is the most general form. 
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Figure 1. The complex momentum plane. 

The G:(p) are the form factors associated with the eigenstates of the complex 
Hamiltonian and they are related to the eigenfunctions &(p) by 

The symmetry of 7-l gives identical left and right eigenfunctions and so the orthogonal- 
ity condition is 

Following the previous section we can now include both real and complex poles by 
choosing 24 < min(arg s,) and writing 

P(p, P ’ ,  s) = GE(p)Cub)G%’) 
with 

The relevance of this to the real problem (4 = 0) is given by Lovelace (1964a, b) who 
showed that (the phase dependence in the two references appears to be inconsistent, 
possibly due to a typographical error in Lovelace 1964a) 

(p, p’ ,  s) = e3”T(p ei’, p‘ ei’, s) 

for 

24 < arg s < 2.rr when 4 30 
and 

O <  arg s ~ 2 . r r  -2141 when s 0. 

For negative 4, the wavefunction i,bz(p) is only defined for - ~ / 2  < 4 C 4, but the form 
factor may be continued for 4 > q5w according to 

GZ(p) = e 3 b 9 / 2 ~ ; - B ( p  
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Continuing the form factors to C#J = 0 gives, using equations (20) and (21), 

T(p, p f ,  s) = GEb)CAs)G%? 
with 

(P(s)-l)," =SJs -sw)+47r(s -s,)(s-s,) 

this result being valid, for negative 4, in the region 0 < arg s < 2 r  - 2141. A similar 
result holds, for C#J positive, in the region 24 < arg s < 2 7  with each s, replaced by SE. 

This expression allows a parametrization of the two-body matrix in terms of an 
arbitrary number of bound states and resonances with form factors GO,@). The latter 
are chosen such that they satisfy the orthogonality condition along arg z = 4 < min(4,) 

5. Unitarity 

The off-shell unitarity condition is 

T(p, p ' ,  s +i r  ) - T(p, p f ,  s -ie) = -47r2kiT(p, k, s +ic)T(k, p f ,  s - i r )  (23) 

Using the representation (22) for T(p, p f ,  k2+ie)  and the corresponding represen- 
with k = +Js. 

tation with - 4  for T(p, p f ,  k2-ie) we have 

T(p, p f ,  k 2  + i r )  - T(p, p f ,  k Z  - i r )  

= GE(p)(TZy(k2+ie) - c$'(k*-ir)G:(pf) 

= G", ( p).T,$(k2 + ir)Dw5-&'(k2 - ie)G;(p') 

with 

0, = (T'(k2-i6)-'- @(kz+i~)- ' l )v  

Using (18) we can write 
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where the integrals run along the contours C1 and C2 shown in figure 1. The 
singularities associated with the potential lie along the imaginary axis and their 
contributions to the two integrals cancel leaving 

0, = 27r(27ri)cu3 -4kgi( -k )g i (  - k)- ikgi(k)gj(k))aT = -47r2ikG:(k)G:(k). 

Substitution of this into (24) demonstrates that the off-shell unitarity condition is 
satisfied. 

6. Summary 

The T matrix constructed in 0 4 explicitly shows the contributions from the bound 
states, resonances and distant singularities in the complex energy plane. Consequently 
in situations where one is guessing a potential to describe a particular physical situation 
(22) provides a convenient alternative which leads directly to a T matrix whose off -shell 
behaviour is known explicitly. 

A compact non-separable potential is one which can be approximated by 

with A, + O  as n +CO. 

Such a potential will have a denumerable set of singularities but the form of the T 
matrix suggests that at any value of s it is the nearby singularities that control the 
off-shell behaviour. Consequently one can anticipate that the matrix 7 can be 
approximated by a finite matrix containing contributions from the nearest singularities 
and possibly a phenomenological contribution to represent the omitted distant sing- 
ularities. 

Such a parametrization will be particularly useful in tackling the three-body 
problem where it is essential to know the off-shell two-body T matrices. In particular 
for low-energy atom-molecule scattering below the break-up threshold important 
contributions occur from the ‘unphysical scattering’ of pairs of particles with negative 
two-body energies. This is the region dominated by the bound-state contributions and 
equations (10) and (14) are useful in describing this situation. 

The T matrix forms derived here also have the advantage in that they allow a 
straightforward generalization of the Lovelace equations to include more than one 
bound state or resonance in each partial wave. The identity of the potential form factor 
and the wavefunction form factor when only one state is present in each partial wave 
simplifies the Lovelace equations; recasting the two-body T matrix in the form (22) 
provides a similar simplification in the general case. 
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Appendix 

Define: ( a )  B,, as the cofactor of A,, in the matrix A such that 

A & & , ,  = det AS,,. (A.2) 
( b )  The ( N -  1) x ( N -  1) matrix .# obtained by omitting the pth row and column from 
A .  

(c) C,, as the cofactor of A,, in the matrix .#, i.e. 

c C,4YP = - B w  
Y f P  

With these definitions the inverse of (A. 1) is 

where 

C,U if p and v # p 

p or v = p  
c:,= [ 

and X = Bpp + ( s  + E p )  det A .  
Equations (A.2)-(A.5) can be used to show that (A.6) is in fact the inverse of (A.l)  

and the form of (A.6) shows that, at s = -Ep, . T 1 ( s )  vanishes along the pth row and 
column. This is the result used in 5 3. 
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